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Abstract. By a method which modifies Dingle's original one,
broadening eflfects on the magnetothermal oscillations in two~-
dimensional electron systems are treated analytically and

relevant thermodynamic quantities are evaluated explicitly,

In particular, the behaviors of the chemical potential and specific

heat in a strong magnetic field are investigated. Landau

level broadening does not affect the period - but causes
significant reduction of the amplitude of the oscillations.

For its sensitivity, the oscillating pattern is a good indicator
of level broadening, while the period of oscillation can be

used for the determination of the effective Bohr magneton.
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1. Introduction

Two-dimensional electron systems which are formed in Si inversion layers or
GaAs/GaAlAs superlattices show very unusual properties especially in strong
magnetic field, While these properties have mostly been stgdied und;r the
isothermal conditions; it has been pointed out (Isihara and Shiwa 1;83
Zavadzki and Lassnifig 1984) that their temperature oscillates very strongly
wvhen the magnetic field is varied adiabatically. The significance of

these oscillations is due to the lack of electron motion in the direction of
the magnetic field, This makes the conversion of the field energy into

the kinetic energy of the electrons efféctive.:

In our previo@s work, hereafter to be called I (Isihara and Shiwa f984)
we investigated the case without level broadening. Since in actual systems,
impurity scatterings csuse level broadening, we give in the present article
a somewhat comprehensive treatment of the case with level broadening.
Different from Zawadzki and Lassnig who employed a numerical approach, we

shall make an analytical approach to the magnetothermal ef” =t and derive

explicit formulae for relevant physical quantitites. * For this purpose,

B PRI &
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we shall employ a wethod which modifies linple's (1952) for the de Haas-
van Alphen effect. This 1s a phenomenological approach, but gives the
advsntage of being applicable to several different cases. Therefore. we
shall treat the cases of Lorentzian as well as elliptic broadenings. For
2D electron systems, the latter type of broadening has been introduced
effectively by Ando and Uemura (1984). Although the final broadening
effects depend on the magnitude of the respective broadening parameter,
it is generally considered that elliptic broadening describes low temperature
phenomena well,

" In actual 2D systems, there are Coulomb interactions. We remark that

Isihara, Tsai and Wadsti (1971) showed that these interactions lead to

——

Ty

SR

(S

x L —— \.'. .-‘
O R O OIS 8, 1 T i B e e o e RS M TG o e e e [ I LR e s e =
e e N {“\..:.._4 ‘1‘:1‘: > OO IO 3, SRR '\-"_-.__\-_'. ARG -.\'.-_\‘_\__‘.._\-.\-?\__\-_\-3.:.". S AR




SIS ST PUR S F Ve R . it U e e Ll e B sy o
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a reduction of the amplitude of 3D dHvA oscillations similarly to the case of

in 2D electron systems with Coulomb interaction,

; The magnetothermal effect requires the evaluation of the éntropy‘at

finite temperature. This is a difficult task in the presence of impurity ¥

scattering and a strong magnetic field,  However, the Dingle method can be v

used effectively. tsii
o

)

The energy levels of 2D electrons can be written as

= @ntl)ugh 2 BrfH, n-0, 1, 2, ... _ (1.1)

wvhere ug = el/2mec is the effective Bohr magneton with thg effective mass m,
i:g - eK/Zuoc is the real Bohr magneton with the bare electron mass LIS and
g is the effective Lande's g factor, H being the magnetic field.

_ We note that the magnetothermal oscillations are primarily due to the
orbital motion of the electrons as in the case of the dHvA effect. Therefore,
we ahall gtart with the case without the spin-magnetic field coupling energy.
As can be guessed, this cog?ing causes a shift in the phase of the oscillations.

In th; next section, we shall derive a new formula for the grand
potentiyllof a 2D electron system with lev;l yroidening by a mehtod which
modifiea slightly the original Dingle'a. Section 3 givea a basic .fo.r-uln for
the magnetothermal effect for afbitraty broadening and low but finite temperatuers,
In Section 4, we present an explicit limiting expression for the 'magnetothermal
cffect at ;baolute zero. At the same tiné. we present i new specific heat
formula for the case with level broadening. - As we shall see, the beAavior

of the specific heat is very crucial to the magnetothermal effect, Finally,

in Section 5 we present explicit numerical results and discussions.
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2, Effects of Level Broadening on the Grand Potential

In this section, we treat level broadening by a method which modifies
slightly Dingle's original theory. For analytical simplicity, let us
consider an idealized 2D case in which gugIZ is set equal to g 80 that the

grand potbé}inl becomes

(u) = kT Jen[1+ 2047Cn)) (2.1)
. n .
vhere B = 1/kT is the reciprocal thermal energy and  1is the chemical
potential, We write
1 1
Q) =3 ﬂo(u+uBH) + Eﬂo(“'“BH) (2.2)
vhere ’ . -,
‘ Bu- ¢ *) IR
2,(u) = -kT ] tn[1 + " % ) (2.3)
n .
el = (2n+l)p_H . | 2.4
) H)ug - )

Since the two terms in equation (2.2) differ from each other only in the
sign of uH, ve derive a formula for Qo(u). This 1s then equivalent'to
treating the case without the spin contribution.

_ We introduce the density of states 00(6) per ;nit energy interval
givén by .

¢ (¢) = 2u H 26(6- € ) (2.5)
nK |

where A 'is the surface area, m being the electron mass. We express

equation (2.3) by an integral

() = =kT [ de ¢ (o) enf 1+ (178D (2.6)
Intcgrating twice by psrts, we find
of (r)
a(u) = L de Oq(e)[ } (2.7)
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where
i € €’ ,
¢._(e) = J ‘I c ¢ (e7) (2.8)
' o o
f (€) = —B—(E%-)—— (2.5)
< e ¥ +1

So far the calculation is formally exact. We now replace Dirac's

delta functions by Lorentzian functions of a half width i /T:

=1 1/t , (2.10)
n=0 " (C-em°)2+(1/'r)2

¢ (€) = ;,A%

: vhere, and what follows in this article, we have set f = 1 and 2m =1,
and @ = Buaﬁ.
| At low temperatures, -3!0/36 falls off very rapidly on either sides
of u. For Bu>>1 and UT>>1, the n sum may include all negative integers,
enabling the use of the Poisson summation formulae
The details of the calculatic.m and a comparison with the original Dingle's

wd
v method are given respectively in Appendix A and B.
The general case in which the electron spins are included can be

treated in a similar way. The corresbonding grand potential is given

for arbitrary g by

' 2 2 2 (2.11)
aw =-S5 [&? -9-;1‘1] -
8 n n

cos (TL/Y) co's(gﬂl)
22 Mt —2
, n" t=1. L sinh(n"2/a)

"A ? P /"‘1"'*/‘[ ] ) . ' :

—— e s
— et

As we see, the broadening effects appear only through t:he functions

D(T) and W() which are defined by
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= 2
_W(T) = exp[-n/(1a")] (2.12)
. k+1l -
12 '@ (=) -21Tk 1 2
DM == ) —5—e H Pt G- M, H (2.13)
PN 2 2 & e

1 k 21a

Note that W(I') is simply the Fourier transform of the characteristic
Lorentzian form in the sum of equation (2.10). As each energy level is
broadened in accordance with this form in energy space, the contribution
from the level to the grand potential is.reduced by the amplitude. reduction
factor W(I') such that the higher harmonic contributions are progressively
reduced. Moreover, level broadening affects the non-oscillating part

of the grand potential through the function D). Note that

N) = 1 (2.14)

so that the non-oscillating part is reduced to that given by Isihara and

Kojima (1979). As broadening increases, that is when T incggses. D(T)
A

decreases, This means that the spin paramagnetic contribution becomes

relatively more effective, while the oscillating contribution due to the

orbital motion of tﬁe electrons is weakened.
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3. Impurity Effects on Magnetothermal Effect
The temperature changes under adiabatic variations of magnetic

field are given by

as

(—
dT = —-a—'i—'r—'n— dH (3.1)

oS
ST u,n

where n is the electron density,and the entropy § is related to the grand

partition function by

9 -1, _ 1 ‘
? = (8 ln']H,A.u : (3.2)

B "%? Q)H,A,l.;

The grand potential  has been evalQated as in equation (Z.é;). In order
to perform the differentiations of the entropy as in equation (3.1), it is
necessary to know the behavior of the relaxation time T which has been
introdpced phenomenologically. Let us assume that t is independent of field
and temperature, although it may depend on the electron and impurity
concentrations, '

Since the electron.density is kept constant in the derivativ;s in equai-

tion (3.1),while the grand potential has been obtained for aigiven chemical

potential H, we need the relation for the number density n:

0 ' 4
53) | (3.3)

o= -Gr,aH

This yields the important relation between Y and Yo'

. e
; sin(——ocos(gﬂl)
L e Tt M ——2 (3.4)
o =1 . R
sinh(—) 3
a
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where (A =1, 2m = 1)

=5
= = (3.5)

<|H

o
are dimensionless parameters. Note that 1/Yo represents the experimental
variable such as n or H, while 1/y measures the chemical potential by
the field energy a2.

For g = 2 and T = 0, equation (3.4) becomes

2
1 1 2 W in N
= u =4 = L — sin(—) (3.6)
Yy M e £ Y .
L g ¥ sind
=+ = tan [—————YTJ (3.7)
Y 1-W cos (=)
Y
The latter formula is valid for W = exp(-2nT)<1. (3.8)

For g = 2, the entropy is obtained in the following form

ne
ans a2 am? _ o w2 os(3D)

= Y
2K 38 + 8 I w L(o) - 3 (3.9)
L . TR
sinh(—)
a
where
5 |
L (x) = cothx - % (3.10)

is the Langevin function. It is worth noting that both l/Yo of equat:l(.m (3.4)
and S of equation (3.9) do not have the term D(') which appears in the grand
potential and that the effects of level broadening appcar only through

the function wW(T).

We_conpuée now the two relevant derivatives of the entropy.
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Let us introduce

as
3 'T,n SRCREY

S --l;}l(
Aka

) 9S d
S = — T () (3.12)
T Akaz 3T 'H,n

r After straightforward but somewhat lengthy calculations, which require the
. { ) .
derivatives of the chemidal potential, we arrive at

1747 (1%) = (L cotht " +2T) 2L (27) ]

”,L” ?

i S =%
L

-[2£X;l(2'cothl'+lr)+C][1+2Z£'E£]-1-ZEQQ'L(l') (3.13)
' L L 2

-g -_l_ '2 rd '- 42 rd 2
S, =+ i o (v an-2 S (e

-2£[£§£L‘L(£‘)]2-[1+2£2‘51]71 : (3.1&)
L L

where for simplicity we have used

2 2
T L - T4
C - -a-—- s O = ? ’ L = 9,& - 8
~ £ cos (%) . £ sin(RL) 3 o =k
=¥ igind * MY simg > (T3 s

The magnetothermal effect is expressed in a dimensionless way by '

[2 ]
[» ]

T H dH
! 7T 'ST" 12t

‘ Formilae (3.13) and (3.14) are derived for low but finite temperatures.
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The formula in equation (3.14) can be used to derive the electronic

specific heat at constant area and magnetic field through

2
- A (e bras)
CaH = S [ - (3.17)
The first term in equation (3.14) yields the linear specific heat
2
o nk

which is the correct limiting expression in the absence of a magnetic
field.

In an arbitrary magnetic field, the specific heat decreases
exponentially with temperature (Shiwa and Isfhara 1984). HRowever,
80 lopg as ', the broadening parameter defined by equation (2.13), does

>
not vanish, the linear specific heat 1is retained. Indeed, we find
:’*rﬂlrdr. x C )

2
F —“lg-n 1+ o Cos(r/y) - W (3.19)

near abqplute zero (

€a,H

1-2Wcos (n/Y)

A

" ’u" .

v

kA




TR .y AR —rer N s
el S S e o T o ol B S T

4, Magnetothermal Effect at Absolute Zero
The magnetothermal effect as expressed by the dimensionless
quantity HAT/(TdH) depends on the two entropy derivatives SH and ST
given by equations (3.11) and (3.12) respectively. Note that these
two quantities are also dimensionless. In the natural units which have
been adopted in the present article, the field energy a2 has the dimension
o of a reciprocal area.
For absolute zero, the two entropy derivatives can be given explicitly in
termns of trigonomegﬂric functions as in Appendix C. Our analyses
of the case of absolute zero can be summarized as follows:
First, level broadening eases the abrupt variation of the chemical
potential as expressed by the dimensionless variable lﬂ’defined by
equation (3.5) when 1/Yo in the same equation changes. The latter variable
represents either the electron density or the magnetic field. This
easement is understandable because in the presence of broadening, the
chemical potential does not jump from one sharp Landau level to another.
Actual broadening effects on the chemical potential must be seen numerically,
Second, level broadening brings back the ideal linear specific
heat which vanishes in strong magnetic fields if there is no broadening.

Interestingly, this important change in the electronic specific heat takes

Flace irrespective of the magnitude of broadening, 1f it exists. In a strong
magnetic field and in the absence.of level broadening, the electronic ‘“:5
sgecific heat varies exponentially with the temperature. Since ST' ’ J}q
in the denominator of equation (3.1) is essentially the specific heat, such
a change from the exponential to linear variations causes a considerable

reduction in the magnetothermal effect.

Let us now examine broadening effects more explicitly.

\
".
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Two typical numerical values of the ratio SH/ST are given in Table 1:

h Table 1

P Ratio of Entropy Derivatives at 0 K
-

:5 g ok | lsH/ST’

0.3 0.7408 0.9852
3.0 0.04979  0.2995 ]
T L
In this Taﬁle. we have chosen two values of the broadening parameter ? which r;*:

is defined by equation (3.15)., Interpreting that T 1/2 = mu/e as the

scattering time (Brailsford 1966), where u is the mobility, we find for . ,;3£
S1 inversion layers . ?;;E
4 . 3{?2
L 0.3047(0'19%1( 3 meV - s

2t ™ u(cmzv-1s-1)

i ' :
where L a1d m are the free electron and effective masses resﬁﬂctivcly.

The notation u for mobility is used here only; it is the chemical potential

everyvhere else through(but the present papf@r.
The cyclotron energy can be expressed as

0.19m°

' “wc = 0,6093 H| -—;r———ﬂ meV

vhere'éhe field H is measured in Tesla. -We find then

ags o
v

o %ty
» g - .
! A et
DA TSN

s & __igﬁ____ )| :

H 2,-1 -1 i .

u(cm™v s ) ! p
) L
Ve have estimated from this expression that ¥ can be around 0.3, For 30, s
McCombe and . (del (1967) adopted the same value. The case of ' = 3 has S
been given only for comparison. ‘ ;}F
' )

P
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S. Results and Discussions
.

In our grand ensemble approach, the two relevant entropy derivatives
with respect to H and T require the evaluation of the corresponding derivatives
of the chemical potential. Fcr low temperatures, these are.obtained
by differentiating equation (3.4).

The important ratio SH/ST which determines the magnetothermal effect
depends on how the chemical potential p is related to the experimental
variables such as electron density n and the magnetic field H, Note that
equation (3.4) represents the chemical potential through y-l = u/uBH as
[ fun;tion of the ratio 'Zun/uBH = Yo-l. Since their relatioy.is fundamental
in our theory, we have il;ustrated in figure 1 the case with r = 0.3.

In this 3rapﬁ. the three curves correspoﬁd to & -wzlu =0, 1,5 and 5.0
rcapcctivgly, The first curve represents the case of absolute zero at which
the variation is the sharpest. If there is no broadening, tﬁé variation
at’ 0 K becomes zig-zag as.in our previous work (Shiwa and Isihara 1983).

As the temperature increases, the parameter £ 1ncrea-es.: The case § = 1,5

can be considered intermediate, corresponding roughly to 1,0 K and 2 T,
Such an intermediate case is important for éxpériments. The curve for
g = 5,0 is almost straight, indicating a high temperature and low field
reiation. o

Figure 2 illustrates 16‘ the intermediate case of £ = nzlu- 1.5, how
changes in 1/y take placé about odd integral valué}of 1/y0 when the

‘broadening parameter ? is changed. As we see, the smaller F the sharper

the variation of 1/y about such points. The case I' = 3 is almost straight




: as in the case of £ = 5,0 in figure 1. That is, both P and £ play similar
roles in bringing 1/y close to llyo. .
Figure 3 shows the magnetothermal effect at two temperatures cofresponding

to ﬂzla- 5.0 (left ordinate) and = 1.5 (right'ordinate) but at the same
l ) Sroadening parameter V= 0.3. The arrows indicate the ordinate to be used.

4 These two curves should be compared with figvﬁres 3 and 4 in I. We learn

that the effect of broadening is strong in the low temperature case of ﬂzla-

i 1.5 where the amplitude is reduced nearly 1/100, but is nét very significant
in the high temperature case of n2/a- 5.0. The former corresponds roughly

: to 1 K and 2T, The region of the abscissa corresponds electron density

B of order 1012 cm-2 at 2T. Also, comparing the two curves in figure 3

»
’

with each other, we learn that the oscillations are more sinusoidal in the
o !4-“’1\ N&;Nk\ ‘u.f\
d higher temperature case. b

In view of the coupling between the temperature and broadening effects,
we have illustrated in figure 4 two oscillations for absolute zero., The
left ordinate corresponds to the case ¥ = 0.3 while the right to ¥ = 3.0,
We find that the amplitude is reduced roughly by a factor of 1/30 due to
the increase in broadening. Agsociated with the amplitude reduction, the

oscillating pattern is also changed in an interesting way.

It is important to observe in the above two figures that the nodes appear

close to, especially odd, integral values of 1/70 r at low tempera-
tures or small ? and that the period stays constant: l
8(L/y,) =2 ' (5.1)
Y regardless’broadening. On the other hand, the pattern of the oscillations
depends on broadening. The changes about odd integral values of the

abscissa are sharper than those at even values. However, note that the
phase depends on the g-factor, We have chosen g = 2 for theoretical con-

venience, but the case g = 0 is also interesting. We shall comment on
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the phase in more detail shortly.,

The oscillations become more sinusoidal and the nodes deviate from
(odd) integral values when the temperature is high or the field is low,
as in the case without broadening which was discussed in I. A single
parameter a= azlkT plays an important role in this respect.

It is important to remark that the presence of broadening causes
the zero temperature limit o:+ « different from the case without
broadening. We have already pointed out that broadening restores
the linear specific heat. Since in the absence of broadening, the
sﬁecific heat is exponentially small, an experimerital determination of the
temperatute variation of the specific heat becomes véry importa&t.

Y§ _Since the specific heat depends sensitively on broadening, we have
investigated the zero temperature limit of the magnetothermal effect.
Our results for I' = 0.3 and [I'= 3,0 are illustrated in figure 4. The
arrow indicates the ordinate to be used. "In the former caie;i steep
. 4’7_ changes occur near odd integral values of 1/Y°. Its oscillating pattern
(\\\‘ is significantly distorted from the sinusoidal type which is observed for.’
¥ = 3.0, Hence, by observing such pattern changes, level broadening
may be assessec, .
As in figure 3, the’period of oscillation stays cbnétant.y Together
with the position of the nodes at low temperature and brodaening, the

effective Bohr magneton may be determined from the magnetothermal

——

oscillations. . T

e

However, for actual 2D electron systems it is necessary to extend
our consideration, First, let us examine the choice of g = 2,
This is a special case which simplifies analytical expressions, but in acrual

inversion layers, the effective g factor is enhanced.

In general, the spin factor enters the grand partition function as a
]

] phané factor, and the arbitrary g case can be gencrated from the case of g = 0
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in accordance vith

1 1l . 8m 1 m
costnfy + 2 {coalﬂ(y +3 ;'-(), + cosh(-; - -g-;g}

On the other hand, the case g ~ 0 is similar to the ' idealized case except that

the phase in terms of the variable 1/y° is shifted. For example, in
ne4

$9u
the case corresponding to.Pagz/}; the sharp increases will take place for g = 0

at even integral 1/Y°- Other than that, there is no significant change in
the oscillating pattern, This is understandable because the oscillations

‘are primarily duc to the electron's orbital motion.

i

.

.
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S
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The electrons in Si inversion layers have the effective mass m = 0.19n°. £

The effective Lande's factor g and the effective mags modify the phase
: R
factor in a combined form of g 'm /2m°. This results in a phase shift of

-

t 0,3 approximately if g 1s 3 and the effective mass is 9.19m°.

A comment must be given on the replacement of the 6§ functions by
Lorentzian functions in view of the work of Ando and Uemura (1974) in which
an elliptic form was adopted., They arrivgd at this form for the, central
part of each Landau level by neglecting Landau level couplings. On the
other hand, Gerhardts (1976) arrived at a cauaaﬁﬁtfo;m for level broadening.
In uhat:folloua in the present article, we rema;L on the case of elliptic
broaéening.

With a proper normalization, the use of an elliptic form amounts in

our present theory to have™ | _ i

-
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vhere ? is generally different from 1t of the Lorentzian case.

Adopting the above expression snd following the same procedure as before,
we find that the ¢ dependence of Qo(c) is not changed at all but the

damping factor of the Lorentzian case:

M z

2ne . -

is replaced by
3,0

¥

- wvhere J1 is the Bessel function of the first kind, and

4n

[ -nl?ag

Since ¥ and ¥ are different, a direct comparison of the two cases is

somevhat difficult, However, as we remarked before, the scaétering time
T «'t/2. Hence, it is meaningful to choose T = /2. Then, both
elliptic and Lorentzian forms will have the same height. ° Figure

‘5 11lustrates the magnetothermal oscillations for the elliptic fo;m
___Tlnx_r' « 0,6 and 72/X = 1.5.
While the parameter choice ﬂzla- 1.5 for this elliptic case
is the same as the corresponding one in figure 3, it is interesting to
observe that the oscillating pattern is similar to the curve for V= 0.3
in figure 4. The nodes and period appear as in the Lorentzian case,
but the amplitude is much larger in the present elliptic case due{to the

lack of a long tail in the elliptic broadening function.

Although it 1is somewhat beyond the séope of the prescnt article to
broadening

discuss in detsil the sbove two cases, both cases seem to yield similar

, results if the respective broadening parameter is chosen suitably,

In order to apply the present theory to actual systems, a question
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remains as to the observability of the effect. Although discussions of

experimental problems are also bevoncthe scope of the present article,
we try to conclude this article by addressing this question.,. Note in this
resepct, three-dimensional cases have been observed.

For this purpose, let us considgr a model MOSFET (metal-oxide-f1e1§

effect transistor), consisting of a 50A thick Ti gate, a 4,000 A thick

S$10, layer, a 50 A thick inversion layer and a 500 um Si layer. The

2

surface areas of all these components are assumed to be the same, because then

the area does not affect our following estimate. Hence, let us take a

unit area for all the components.
Let us consider the case in which the electron temperature is dropped by a

few ten percent due to i field change of a few percent at 0.1 K,

Under the adiabatic condition, the energy thus released by the electrons

is expected to be transfered into the system, For a typical electron
about 3

. cn—z, the heat energy thus generated is

2

3.«10-1 cal/cm

density n ~ 101

On the other hand, the heat capacities of all the components are

estimated for 0.1 K based on the T3 and and T laws as follows:

c 3.9x10" 12 cal/k

Ti

Cs10,= 8.1x1071 cal/k
¢, = 1.5x107 cal/k )
el -
’ -12 S0
CSi =  6,9x10 cal/K Cii
The inelastic scattering time is of order 10 ° sec. so that we assume equilibrium ;i;j
established rather quickly under the adiabatic condition. Ci:ﬂ
From the above figures, the heat capacity of the MOSFET is estimated to be ;?3%
i SR

.y
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lxlo-ll cal/K at 6.1K. If the above heat energy is entirely absorved by the

system, the temperature change can be around 0.03 K. Since we have neglected

the specific heat of the thermometer and its leads, the actual temperature

change can be smaller. On the other hand, by reducing the temperature

and increasing the magnetic field and {ts change, one can expect larger temperature
;han;es. Therefore, the magnetothermal oscillations may be observable.

;t least, two-dimensional systems are more favorable than the case of bulk

as far as the energy conversion is concerned,
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Appendix A  Evaluation of Qo

The Poisson_summation formula states:

£ ) - rdsf(s) +2F% rdsf(s) cos (2Tks) @A.1)
n==0 k=1 .

-00 -0
The series in equation (2,10) is then expressed by
. ¢ (e) = —é—'{ﬂ+2ﬂ ¥ (-)k e-2“rk cos(Egs)}
| an? k=1 a (A2)

R

where az -uBH and T has been defined by equation (2.13). This dimensionless

boradening parameter is related to the Dingle temperature T, by

o= il D
rb)c ol - 1 ‘
jb - ;;— ) ) . (Ac3)

w being the cyclotron frequency.
ey

Equation (2.8) yields

-
.

_ 2 4 X 4 kel
é_(€) b L[.E.. + 2a_ ¥ L) .-21rl"k + 22 ¥ §=) - e 2"rkcos(32€)] (A.4)
2 2n 2 2 2 2 .. K
n k=1 .k L k=1 k a

Introducing this expression into equation (2.7) and writing

_ . (A.5)
ﬂo(u) - Qo(u) + no(u)
we obtain
2 4 of
o A € _ _a_ — - (Ae6)
ﬂo(u) o dt:['2 : D(I‘)](ae )
ol

where D(I') has been defined by equation (2.13). Note that the series in

)

equation (A.4) are characterized by the reduction factor W defined by equation

(2.12). The functions D ) and W(I') are related with each other by

w(r) AT
D) -Bji ar Anllet)y (7

We also find

e .o =
v A, 8 e ot ek R
A oe en Oy th= o i

{ s AR
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: ) 4 k+1 of .
o = A;, ¥ (')2 e-ZﬂFk [wde cos(EK%)(gzg) (A.¢)
9 T -kel Xk a

o
Note that ﬁ;(u) represents the non-oscillating part and ﬁo(u) is the
;,ogéillnting part of the grand potential.
The integral in equation (A.6) can be obtained easily. 1In the

neglect of exponentially small terms, we arrive at (Appendix B)

-
.

. 2 4 . .
= A 2" a .
2, = - g Du™ o p( ). - , (A.92.

Note that in the limit ' = 0 this reduces to °

5()--Ln—2-[:1+,1_‘.2_.-ﬁ] . O .
o M an g2 w3 (As10;,

in agreement with Isihara and Kojima (1979). Here, n = Bu and Y= a/n."

The integral in the oscillating part can be obtained ‘ as follows:

of
-1 o ke
Ik = - I“de 3 cos (a2 )

o

X mk
e cos(a—x)

2 mk ' (A.11) - .
x = cos(—){ dx
8 Y A (e*+1)2

where

(A.12)

1°(6) = I“;x exp (x+16x)
I e?

Substituting
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z =
¥+l (A“bl
we get
ol j‘dz a-n! _ rauera-18 _ _ns P
i3 T() sinh (13) (A.13)
(o]
Hence, 5
. cos(gz) "2k '
.1nh(~af0
Thercforc; '
& m k+1 -2“rk
doa = -5 F 1% cos (mk/Y) (A.16)
78" kel ‘ k sinh(n"k/a)

' The appearance of the exponential factor exp(-21Tk) is characteristic of

Lorentzian broadeniug.. Note that this factor decreases rapidly wita k.

"Adding the two contributions, we arrive at a basic formula:

3 A
-2 % D(I) 4. 4a L+1 -2nTL  cos(mi/Y)

QA = o Bofide Lo o BfAY A, B0 o gitl } (A17)

- TSN e 82 g=1 L sinh(n2t/q)

Accordingly, we can construct’ the grand potentinl for arbitrary g

following equation (2.2).
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Appendix B Comparison witt Dingle's Original Nethod

iDingle's original method amounts tc replacing equation (2.6) by

: . & Bu~2ae
n:(u) T SR rdc tnl1se ) : e

u82 n=0 " (e- (n+ %)]2+F2

=80
where the suffix D is attached for distinction. Note that the lower bound
is -», Dingle gave a physical ground for this, although not very convincing.

The n-sum can be replaced by an integral based on Poisson's sum rule. The

result is
' ' 2niks . -
ﬂo(u) - - M L b (-)k rdc J".d, e ni . Lnu“ﬁu-zuc)' .
= L wp? ¥ g (c-8) 2412 . sl

-8

The 's-integral can be performed, but results in divergences in the €-integral

such as seen in

I';c JTKE g BU-20E)

-
Neglecting all these divergences, and after a somewhat lengthy calculation,
! N_arrivo at
P - -2 ¢ (<) 141 20T .ﬂ’_(_yi&_’__ .

78 =1 i
¢ sinh (T)

L
2y

¢ T8 o7 g2 Ly (B+3)

+2alg 5 e %y
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1.1, -1,x ~ 14l Bpell 10T
g (x) = — + — tan (=) + t bl (= =
N L . 3 e
A P » By = Wby - (B4

..é£v3z§7) = { %—;)vgo(z)]z - 1/2y -
and B represents the Bernoulli number suchoas Bo = -1, B1= 1/6, etc. Note
that the first term 1/2 of go(x). when introduced into the double 1nteéra1
for gz(x). still causes a divergence. We must neglect this divergence also.
Then, for che.case of p1>>1, the nonoscillating part of equation (B.3) yields
the same diamagnetic terms as Dingle's (See his equation (4.2)). Also,

we can show that (B.3) is reduced to the correct expression in the limit

r+0.

DR o S e S e T ST % TR a—
o M il A 5 sen
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y ot .

In our present somewhat improved method, the replacement of Dirac's §
functione by Lorentzian funcitons is made aftcer no(u) is integrated twice
by parts as in equation (2.7) where the lower bound of the ¢ integration

is kept to be O+. We then obtain

o
W
3 2“5‘“ - - z
B0 = - 23 F"e —gpm Uyt & e heot
nf (e +1) k= =00
o+t
€ e’ " )
x I ae” I A Far ARGy ] (B.5)
o+ o+

where Z; means summation excluding the term k = 0, and

€ € :
g,(€) = J ae Ide 9o (™) (B.6) ——

o+ o+
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Under the dHvA condition that y<<l, go(I/ZY) is a power series in
72 1f 1/y>>T, {.e.,ut>>1 then

g (e)v 1
2
By (e)v c7/2 .
in the region of ¢ immediately close to 1/y . Hence, we arrive at
equations (A.9): and (A.16). Note in equation (A, 9) , D(') appears in
the nonoscillating part, reducing the magnitude of the diamagnetic

susceptibility.
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Appendix C Treatment for Absolute Zero "_.',-:
3 . ::-';.'.
In this section, we consider the limits &+ and B/T+» and try to %;
A derive explicit limiting formula. For this purpose, we introduce 5&
simplifying notations such as s ii{
- 1, _asi f"‘
a -1, asinx :
¥ o 8in nx = tan [m] =S_,(x;a) N
n=1 ] A
¥ a" sin nx = —2510X = s (x:a) Gl
n=1 l-2acosx+a E
(C.1) k..
n I acosx-a> o
f ‘a’ CcOsS nx = = Co(x;a) . '

n=1 1-2acosx+a ; "
.

a[(1+a2)cosx-2a]

f ann COS nXx = 3 5 = Cl(x:a)
n=1 (1-2acosx+a“)
' a(l—az)si X ::
f a™n sin nx = n 5 = Sl(x;a) 6
n=1 (1-2acosx+a”) -
for Ial <. i

Hence, Y versus Yo relation (3.7) reads as

1 2 g
= Y + 7 s_l(yow) Py (Q-+e0) (C.Z)

.°'< l"‘
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It is easy to show that equéﬁion (3.13) leads to

.

= :
n n n i n = o n -1
STt {T‘c1 ?‘"’*Sl(V‘")[y +25_1(7;W)+2FS°(Y,W)][1+2C°(Y;W)] }y (0400, B/T+0)
(C.3)

-S..

We can also show that

TRl

(C.lo)

P {

-e
-

2
n n .
ST % [1+2C°(?:W)J ’ {a-+oo)

A
y

We .remark that this entropy derivative yields the specific heat as follows:
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absence of magnetic field.

exponentially. -

oscillating terms.
accord with Isihara and Koj

small even without broadeni

1
e 'r{1+2c° ‘7’")} 5

broadening of the Landau levels.

(per area)

Note that the first term is the correct linear specific heat in the

This term is canceled out if there is no

In fact, the specific heat decreases

The reappearance of the linear specific heat is due to
» the in‘troduct:lon of level broadening which in effect suppresses the

The reappearance of the linear specific heat is in

ima who treated the oscillating terms to be

However, their assumption is valid only

ng.

for relatively high temperature and low magnetic field.

These limiting formulae can further be simplified if 1/y is an

OO TUATR P o g

E

i reee :'. S

,"f’ W integex: If W ¥ 1 and 1/y = m, an integer, we find’
S =0 n= "11 0, 1
n
(=)W (=)™ .
C = —— Cl = 3 (C.6)
° 1-(-)"™w (1-(-)"w]
' = =
Hence,
e g 12 (-)"wl
= W o T C.7
o 30 -)"W)? O
) )"
52 " 35 {2 + L) (C.8)
1- (=)™ :
wWe obtain
ar _ - 2wl au even '
T+ ¥ for (odd (C.9) s
1-W iy
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Although these expressions involve series, their convergence is very
good in general due to the presence of the convergence factor w"

appearing through El and ;2. ] A
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Figure Captions

Fig. 1. Variation of 1/y= u/uBH as a function of 1/'yo = Znn/uBH
(K =1, 2m = 1) at ? = 2a= 0.3 for three different temperatures.
Here, u 1is the chemical potential, n is the electron density and
g is the effective Bohr magneton, T being a broadening parameter.
Fig. 2. Effect of broadening on 1/y which is the chemical potential in the
units of the field energy at constant.ﬂzla- 1.5, where a -uBH/kT.

This case corresponds approximately to 1-K and 2T.

-

Fig. 3. Magnetothermal oscillations for a fixed broadening parameter
W ' =2nT= 0.3 at different temperaturea corresponding to ﬂ2/a- 5.0
/. g

(left ordinate) and /a- 873 (right ordinate). Tﬁe latter
represents roughly the case of 2T and 1K in the region of elecyron
density of order 1012 cm2.
Fig. 4. Broadening effects at absolute zero. Left ordinate: I'= 0.3.
Right ordinate: ?- 3.0. The arrow in each curve represents the
ordinate to be used.
¥ Fig. 5. Magnetothe%%l oscillations for an elliptic density of states

with ' = 24T'= 0.6 and for n2/a = 1.5, I'' is the broadening

parameter in this case,
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We .remark that this entropy derjvative yields the specific heat as follows:
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